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Interferometers might probe Planck scale physics 

One interpretation of the Planck frequency limit predicts a new kind 
of uncertainty leading to a new detectable effect:  

"holographic noise” 

Different from gravitational waves or quantum field fluctuations  

Predicts  Planck-amplitude noise spectrum with no parameters 

We are designing an experiment to test this hypothesis 
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Planck scale 

The physics of this “minimum time” is unknown 

                seconds 
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Quantum particle 

Black hole radius 
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1.616"10#35m

particle energy ~1016 TeV 

Particle confined to Planck volume makes its own black hole 
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Two ways to study small scales 

CERN and Fermilab particle colliders rip particles into tiny pieces
—tiny, but  not small enough 

Interferometers may sense nonlocal jitter 
from the wave character of spacetime  
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Quantum limits on measuring event positions 
Spacelike-separated event intervals can be defined with clocks and light 

But transverse position measured with frequency-bounded waves is 
uncertain by the diffraction limit,    

This is much larger than the wavelength 

5 
Wigner (1957): quantum limits 
with one spacelike  dimension 
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Add second dimension: small 
phase difference of events over 
large transverse  patch 
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Nonlocal comparison of event positions: 
phases of frequency-bounded wavepackets 
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Wavefunction of relative positions of null-field 
reflections off massive bodies 
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Quantum limit of an interferometer of size L 

Heisenberg uncertainties of mirror position along arm 1 and 
photon momentum along arm 2 

Uncertainty of transverse position from measured phase 

Uncertainty in difference 

~ diffraction limit: does not depend on masses 

No “better measurement” of transverse position is possible 
with single wave quanta 
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"x1 > ! / 2"p2
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"x2 > L("p2 / p0 )
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"x1#2
2 > $0L / 2%
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A new uncertainty of spacetime? 

Suppose the Planck scale is a minimum wavelength  

Then transverse event positions may be fundamentally  
uncertain by the Planck diffraction limit 

Classical direction ~ ray approximation of a Planck wave 
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Visualizing the effect: Diffractive blurring in holograms 

If you "lived inside" a hologram, you 
could tell by measuring the blurring 

Blurring  much bigger than  
wavelength: 

is the transverse resolution at a 
distance L 

(D ~ 1mm for an optical hologram at 
L~ 1m) 
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examples from wave optics 

Wave patterns much larger than 
the wavelength 
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“This is what we found out about Nature’s 
book keeping system: the data can be written 
onto a surface, and the pen with which the 
data are written has a finite size.” 

-Gerard ‘t Hooft 

Bold idea from black hole physics:  the world is a hologram 
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Holographic Principle 

Bekenstein, Hawking, Bardeen et al., 'tHooft, Susskind, Bousso, 
Srednicki, Jacobson, Banks, Fischler, Shenker, Unruh 
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Black hole thermodynamics and evaporation  

Universal covariant entropy bound 

AdS/CFT type dualities in string theory 

Matrix theory 

All suggest theory on 2+1 D null surfaces with Planck scale bound 

But there is no agreement on what it means for experiments 



Possible consequence of holography 

Hypothesis: observable correlations are encoded on light 
sheets and limited by information capacity of a Planck 
wavelength carrier (“Planck information flux” limit) 

Predicts uncertainty in position at Planck diffraction scale 

Allows calculation of experimental consequences 
Matter jitters about geodesics defined by massless fields 

~ Planck length per Planck time 

Only in the transverse (in-wavefront) directions 

Quantum effect: state depends on measurement 

Coherent phase gives coherent transverse jitter on scale L 
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Rays in direction normal 
to Planck wavefronts 

Localize in wavefront: 
transverse momentum, 
angular uncertainty 

wavefunction of position: 
transverse uncertainty, 
Planck diffraction/jitter, 
transverse coherence 



A candidate phenomenon of unified theory 
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Fundamental theory (Matrix, string, loop,…) 

Effective theory (Planck frequency limit, carrier wave, 
diffractive transverse position uncertainty) 

Observables in classical apparatus (effective beamsplitter 
motion, holographic noise in interferometer signals) 



Black Hole Thermodynamics 

Bekenstein, Bardeen et al. (~1972): laws of black hole 
thermodynamics 

Area of (null) event horizon, like entropy, always increases 

Entropy ~ event horizon area in Planck units (not volume) 

Is there is  a deep reason connected with microscopic degrees of 
freedom encoded on any 2D null surface? 
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 Black Hole Evaporation: a clue to unification 

Hawking (1975): black holes slowly radiate particles, lose energy 

convert “pure spacetime” into normal particles like light 

number of particles ~  area of the surface in Planck units 
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Unitary black hole evaporation 

Initial state: black hole (spacetime vacuum) 

Final state: particles in flat spacetime  
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Numbers of  initial and final states must match 



!  one particle evaporates per Planck area 
!  position recorded on film at distance L (violates s wave symmetry)    
!  wavelength ~ hole size R 
                        standard position uncertainty 

 Particle images on distant film must have fewer “pixels” than black hole 

 Requires transverse uncertainty in arrival position at large distance L  

Uncertainty independent of black hole R 

! 

"x > #PL

Record images of final particles, count their states 

! 

(L /"x)2 < (R /#P )
2

! 

"x > R
! 

"x
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New “holographic” uncertainty of distant 
position….with or without a black hole 

Black hole calibrates the effect: no parameters 
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Example of holographic unification: 
one interpretation of Matrix theory 

!  Banks, Fischler, Shenker, & Susskind 1997: a candidate 
holographic theory of everything 

!  N x N  matrices describe N “D0 branes” (particles) 

!  Trace of matrix = average position in that dimension 

!  Circumference of M dimension = Planck length 

R= radius of 
M dimension 

D0 branes 

 large spacelike dimension 
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Macroscopic wave equation from Matrix theory 

Matrix Hamiltonian stripped to macroscopic (kinematic) essentials 

Becomes 

!  Schrodinger equation, with z+ = time and u(x) = wavefunction of 
matter position 

!  =“paraxial wave equation” with Planck wavelength carrier 

!  New quantum relationship between spacelike surfaces 

!  Quantum mechanics without Planck’s constant 

!  “Bohr atom” for spacetime states? 
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where Π̂ denotes the conjugate to X̂. This leads to a Schrödinger wave equation resembling Eq. (7) if we make

operator identifications similar to those in the standard Schrödinger wave theory, with substitution of the light sheet

coordinate z
+ ≡ (z + ct)/2 for t in the Hamiltonian operator (since for events on a null trajectory, z

+
= ct = z):

trΠ̂2 → −h̄
2∂2

/∂x
2
, (9)

Ĥ → ih̄∂/∂z
+
, (10)

and set R → k
−1

= λ/2π. As in ref. [11], we leave the minus sign in the squared momentum operator, or equivalently,

adopt the usual Schrödinger imaginary momentum, −ih̄∂/∂x. The wave equation for M theory in one transverse

dimension then becomes:

∂2
u

∂x2
+

4πi

λ

∂u

∂z+
= 0. (11)

Solutions to Eq. (11) can be expressed as a sum of modes that combine longitudinal and transverse waves:

u(x, z
+
) =

�

k⊥

Ak⊥ exp−i[k
+
z
+ ± k

⊥
x]. (12)

where the wavenumbers of the modes in the two dimensions are related by

k
⊥

=

�
4πk+/λ. (13)

For each mode there is a longitudinal and a transverse wave. For a wavepacket or superposition, describing the

position of bodies (the wavefunction for the center of mass of a collection of branes), there is an uncertainty principle

in each transverse direction. The conjugate variables in this case are x and k
⊥

. Their variances �∆x
2� and �∆k

⊥2�
in a wavepacket obey uncertainty relations of the usual form,

�∆x
2��∆k

⊥2� ≥ 16π2
, (14)

where the inequality is saturated in the case of gaussian distributions. Using Eq. (13) to convert to the longitudinal

wave scale, positions with longitudinal separation on scale ∆L
+ ≡ (4π/λ)(2π/�∆k

⊥2�) have a transverse variance

�∆x
2� > λ∆L

+
/2. (15)

Note that h̄ has not been assumed to be unity here: it has cancelled out, leaving λ as the only scale in the theory.

This is interpreted as a new kind of uncertainty. A system with a given macroscopic extent has an intrinsic transverse

indeterminacy. Since it is formulated here in terms of waves, it does not directly give the precise uncertainty for an

apparatus of a given configuration; some other approaches to computing that are suggested below. Still, this line of

reasoning connects an effective macroscopic holographic uncertainty to fundamental holographic light sheet theories.

Normally we think of degrees of freedom as almost all residing in independent modes at the microscopic scale.

Interferometers are of course exquisitely designed to ignore these and instead measure the envelope wavefunction, the

mean or center of mass position of a vast number of particles, on a macroscopic scale. They exclude from the measured

signal as many as possible of the internal degrees of freedom that could potentially add more noise. The matrix-theory

view of this is that the signal directly encodes the trace of one of the (very large dimensional) fundamental matrices

corresponding to the center of mass of the whole body.

Paraxial Representation of Holographic Spacetime

Wave optics language translates straightforwardly into a hypothesis about the quantum states of an emergent,

holographic spacetime. The holographic geometry hypothesis is that macroscopic wavefunctions of position transverse

to a light sheet obey the paraxial wave equation (Eq. 7), with a fundamental wavelength λ, in terms of the normal

coordinate z in any lab frame:

∂2
u

∂x2
− 4πi

λ

∂u

∂z
= 0. (16)
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Holographic Hypothesis: Paraxial Wave Equation

A specific way to formulate the holographic hypothesis is to posit that effective spacetime wavefunctions describing

macroscopic position states are solutions not of the 3D wave equation, but of the paraxial wave equation.

In the emergent 3D space, the 2D light sheet appears as a wavefront moving at the speed of light. The state is thus

naturally described as deviations from the wavefronts of a periodic plane wave. The frequency of the carrier is the

fundamental frequency in some given lab frame.

Start with the standard 3D wave equation for a field with a single fixed frequency. In three dimensions, the 3D

wave equation for any field component can be written as the modulation of a carrier wave,

(∇2
+ k

2
)E(�x) = 0. (4)

Here E(�x) is a complex phasor representing the amplitude and phase at each point. We use Euclidean coordinates

�x = x, y, z to denote positions in an arbitrary lab rest frame. A sinusoidal time dependence is built in, E ∝ sin(ωt),

where ω = ck = 2πc/λ. In holographic geometry the carrier is at the Planck frequency.

To derive the paraxial wave equation, we express the field in the form

E(x, z) = u(x, z)e
−ikz

. (5)

The field u now describes deviations from a plane wave normal to the z axis. For simplicity, we consider one transverse

dimension x and one longitudinal dimension z; identical and independent equations apply to y, z. In laboratory optics

applications, z corresponds the direction of a beam, and x to the width of a beam. In our holographic application z

corresponds to position in a particular direction that defines the normal axis of a holographic frame, and x to position

in a transverse dimension. The wave equation for u becomes

∂2
u/∂x

2
+ ∂2

u/∂z
2 − 2ik∂u/∂z = 0. (6)

The paraxial approximation is to assume that the second term is negligible compared with the others:

∂2
u

∂x2
− 2ik

∂u

∂z
= 0. (7)

This equation is proposed as an effective wave equation governing transverse position states of spacetime on macro-

scopic scales.

It should be emphasized that this phenomenological description is not a fundamental theory. The carrier field is

not a dynamical physical field, but a calculational tool. It is constructed to represent the holographic behavior in

a lab frame; thus, the wavefunction represents the slowly varying parts of the spatial behavior relative to a Planck

frequency plane wave. A true carrier field would not be invariant under boosts to another frame, and neither is this; the

wavefunctions are frame-dependent. Similarly, the expansion in paraxial coordinates makes sense if the fundamental

theory is built on 2D light sheets, even if the actual wavefronts are not the same in a different lab frame. The theory

accurately describes the kind of macroscopic geometrical information that is likely to survive in the classical limit,

and therefore is motivated as a proposal for an effective theory.

Relation to Matrix theory

It will be noticed that Eq. (7) is mathematically identical to the one dimensional nonrelativistic Schrödinger wave

equation, with z replacing time and −k replacing m/h̄. The interpretation of this equation as a wave equation

for spacetime also appears to be a natural consequence in a particular macroscopic interpretation of Matrix theory

proposed in ref.[11]. In this interpretation the single transverse coordinate operator x̂ refers to the center of mass of a

collection of N D0 branes or particles, described as the trace of a fundamental N×N matrix, one of nine matrices out

of which emerge nine spatial dimensions: x̂ = trX̂. The emergent 3D system has a maximum frequency equal to the

inverse periodicity R of the compactified M dimension, the only scale in the system, assumed in this interpretation

to be of order the Planck scale in any lab frame of the emergent spacetime. Modes in the 9 spatial dimensions that

emerge from the matrices are not independent on scale R, where the theory is strongly coupled, which indicates that

it obeys the holographic bound[4, 11]

The kinematic terms of the Banks et al.[4] Matrix Hamiltonian for the X̂ matrix can be written

Ĥ =
R

2h̄
trΠ̂2

, (8)

CJH and M. Jackson:arXiv:0812.1285 PhysRevD.79.124009 
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Wave modes mix longitudinal and transverse dimensions 

!  Wavepacket spreading: slow transverse diffusion or diffraction 

!  Becomes more ray-like on large scales 

!  not the same as field theory limit 

!  New uncertainty principle: 

x 

z+,t 
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Note that h̄ has not been assumed to be unity here: it has cancelled out, leaving λ as the only scale in the theory.

This is interpreted as a new kind of uncertainty. A system with a given macroscopic extent has an intrinsic transverse

indeterminacy. Since it is formulated here in terms of waves, it does not directly give the precise uncertainty for an

apparatus of a given configuration; some other approaches to computing that are suggested below. Still, this line of

reasoning connects an effective macroscopic holographic uncertainty to fundamental holographic light sheet theories.

Normally we think of degrees of freedom as almost all residing in independent modes at the microscopic scale.

Interferometers are of course exquisitely designed to ignore these and instead measure the envelope wavefunction, the

mean or center of mass position of a vast number of particles, on a macroscopic scale. They exclude from the measured

signal as many as possible of the internal degrees of freedom that could potentially add more noise. The matrix-theory

view of this is that the signal directly encodes the trace of one of the (very large dimensional) fundamental matrices

corresponding to the center of mass of the whole body.

Paraxial Representation of Holographic Spacetime

Wave optics language translates straightforwardly into a hypothesis about the quantum states of an emergent,

holographic spacetime. The holographic geometry hypothesis is that macroscopic wavefunctions of position transverse

to a light sheet obey the paraxial wave equation (Eq. 7), with a fundamental wavelength λ, in terms of the normal

coordinate z in any lab frame:
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Approach to the classical limit  

Angles become less uncertain (more ray-like) at  larger separations: 

Transverse positions become more uncertain at larger separations: 

!  Not the classical limit of field theory 

!  Indeterminacy and nonlocality persist to macroscopic scales 
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Different limits of unification theory 

Fundamental theory 

Particle states, localized 
collisions: field theory 

Nonlocal event positions: 
holographic wave modes  
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Wave Theory of Spacetime 

Adapt wave optics to theory of 
“spacetime wavefunctions” 

Transverse indeterminacy from 
interference of Planck waves 

Allows calculation of observable 
correlation and  holographic noise  
with no parameters 
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Survey of theoretical background: arXiv:0905.4803 

Arguments for the new indeterminacy 
Wavepackets with maximum frequency,  information bounds, black hole 

evaporation, matrix theory 

Non-commuting clock operators (arXiv:1002.4880) 

Arguments for spatial coherence of jitter 
Locality, matrix theory 

Ways to calculate the noise 
Wave optics solutions 

Planck wavelength interferometer limit 

Precise calibration from black hole entropy 

No argument is conclusive: motivates an experiment! 
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Michelson Interferometers 

Devices long used for studying spacetime: interferometers 

Albert Michelson 
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Michelson interferometer 

29 Craig Hogan, Purdue  Colloquium, March 2010 



Albert Michelson reading interference fringes 
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First and still finest probe of space and time 

Original apparatus used by Michelson and Morley, 1887 
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Michelson and team in suburban Chicago, winter 1924, 
with partial-vacuum pipes of 1000 by 2000 foot 

interferometer, measuring the rotation of the earth 

32 Craig Hogan, Purdue  Colloquium, March 2010 



Attometer Interferometry 

Interferometers now measure transverse positions of 
massive bodies to                          over separations ~103 m 
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! 

~10"18m / Hz

GEO600 beam tube and beamsplitter 



         GEO-600 (Hannover) 
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Designed for gravitational waves at 
audio frequencies (50 to 1000 Hz) 

LIGO: Hanford, WA  and Livingston, LA 

35 Craig Hogan, Purdue  Colloquium, March 2010 



LIGO interferometer layout 
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Future LISA mission: 5 million kilometers, ~ 0.1 to 100 milliHertz 
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Holographic Noise in Interferometers 

tiny position differences caused by spacetime wave blurring 

holographic noise in signal: “Movement without Motion” 

“Nature: the Ultimate Internet Service Provider” 
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Holographic noise in a Michelson interferometer 

 this is a new effect predicted with no parameters 
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Jitter in beamsplitter position 
leads to fluctuations in 
measured phase 

Range of jitter depends on 
arm length: 

! 

"x2 = #PL

detector 

input 



Interferometers as holographic clocks 

Time is not an observable 

Must be measured by physical clocks 

Suppose clock operators live in 2D, associated with 
holographic null sheets 

Clocks have an orientation  

Time measurements in 3D in different directions do not 
commute at the Planck scale 

Leads to the holographic noise in comparison of clocks in 
different directions (e.g., laser wavefronts in Michelson 
interferometers) 

Over short time intervals, interferometers are much more 
stable than atomic clocks 

CJH:  arXiv:1002.4880 
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 Universal Holographic  Noise 

 Spectral density of equivalent strain noise independent of frequency: 

Detected noise spectrum can be calculated for a given apparatus 

CJH: arXiv:0712.3419   Phys Rev D.77.104031 (2008) 
CJH: arXiv:0806.0665    Phys Rev D.78.087501 (2008) 
CJH & M. Jackson: arXiv:0812.1285 Phys Rev D.79.12400 (2009) 
CJH: arXiv:0905.4803  
CJH: arXiv:1002.4880 
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S. Hild, GEO600 
42 

Can GEO600 hear holographic noise? 
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The behavior can also be described in the frequency domain. The spectrum Ξ̃(f) is given by the Wiener theorem,

Ξ̃(f) = 2
� ∞

0
dτΞ(τ) cos(τω), (35)

where ω = 2πf .[25] Integration of this formula using Eqs.(33) and (34) gives a prediction for the spectrum of the
holographic displacement noise,

Ξ̃(f) =
c2t0

2π(2πf)2
[1− cos(f/fc)], fc ≡ c/4πL. (36)

The low frequency limit (f << c/2L) gives a flat spectrum independent of f :

Ξ̃(f) ≈ t0L
2/π = 2tP L2/π, f << c/2L. (37)

The spectrum at frequencies above fc oscillates with a decreasing envelope. The apparatus size— the distance over
which the sampling occurs— acts as a high-pass filter; fluctuations from longer longitudinal modes do not enter into
the signal. The exact predicted spectrum may differ at high frequencies, since this description of the apparatus is still
based on a semiclassical wave model.

Equivalent Strain Spectral Density

A model of an apparatus using the beamsplitter position correlation function (Eqs. 33, 34) as a description of
effective classical motion allows a prediction of the signal statistics at all frequencies. Current results are generally
quoted in terms of equivalent gravitational wave strain, which requires a consideration of the gravitational wave
transfer function of an apparatus.

A gravitational wave is a perturbation of the spacetime metric. As emphasized earlier, the holographic effect is
not a metric perturbation, but a fluctuation of mass-energy position from a classical geodesic. A gravitational wave
affects interferometer signals by causing a perturbation in the difference of integrated distance traversed by light in
the two arms. Holographic noise affects the signals by a change of position transverse to null wavefronts whose phase
is being measured. The apparent gravitational wave spectrum of holographic noise depends on the configuration of
the apparatus. In particular, it changes if the arms of the interferometer are folded, or include resonant Fabry-Perot
cavities that amplify the effect on phase of an arm length perturbation.

In the low frequency limit (Eq. 37), the effective holographic beamsplitter displacement noise in a folded Michel-
son interferometer creates the same noise spectrum as an amplitude spectral density of gravitational waves given
approximately by:

h(f) ≈ N−1
�

Ξ̃/L2 = N−1
�

2tP /π = N−11.84× 10−22/
√

Hz, (38)

where N is the average number of photon round trips in the interferometer arms.
The reason for the added factor of N−1 in Eq.(38) is that folded arms (as in GEO600) amplify the signal response to

a gravitational wave strain, but do not increase the holographic noise in the signal. The holographic displacement of
the beamsplitter and inboard folding mirrors in physical length units just depend on the actual size of the arms. The
folding effectively lengthens the arms for gravitational wave detection by up to a factor of N , but it does not change
the displacement spectrum or amplify the holographic noise in the signal. Thus for a given physical displacement of
the beamsplitter, the measured phase displacement corresponds to a gravitational-wave strain proportional to N−1

at frequencies below ≈ c/2LN .
One might worry that the inboard mirrors share the holographic motion of the beamsplitter. The holographic

movements of the inboard mirrors (if they are close to the beamsplitter) are almost the same as those of the beam-
splitter. They execute the same bounded random walk about a common classical position. However, those motions
are transverse to the beam in each arm so there is no effect on the signal phase from the inboard reflections.

In GEO600, with N = 2, the estimate in Eq.(38) predicts a new noise source, h =
�

tP /2π = 0.92 × 10−22/
√

Hz,
at all measured frequencies. Indeed if it is real, holographic noise is currently an important noise source in GEO600
at its most sensitive frequency, around 500 Hz. In ref. [10] a similar result was derived, by a calculation based on
a wave-optics model similar to that presented here. In that paper however it was erroneously claimed that in the
GEO600 power-recycling cavity the predicted slope changes at very low frequencies, below an inverse power-recycling



Current experiments: summary 

!  Interferometers are the best technology for detecting the effect 

!  Most sensitive device, GEO600, operating close to Planck 
sensitivity 

!  GEO600 “mystery noise”:  ~2 years of checking 

!  A definitive sub-Planck limit or detection is difficult with 
GEO600: evidence is based on noise model 

!  LIGO: wrong configuration to study this effect 

!  No experiment has been designed to look for holographic noise 

!  More convincing evidence: new apparatus, designed to 
eliminate systematics of noise estimation 
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The Fermilab Holometer  

11/27/08 9:16 AMOxford English Dictionary holometer
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holometer SECOND EDITION 1989  

(h l m t (r))  [f. HOLO- + -METER, Cf. F. holomètre (1690 Furetière), ad. mod.L.

holometrum, f. Gr. - HOLO- +  measure.] 

    A mathematical instrument for making all kinds of measurements; a
pantometer.

1696 PHILLIPS (ed. 5), Holometer, a Mathematical Instrument for the easie

measuring of any thing whatever, invented by Abel Tull. 1727-41 CHAMBERS

Cycl. s.v., The holometer is the same with what is otherwise denominated

pantometer. 1830 Mech. Mag. XIV. 42 To determine how far the holometer be

entitled to supersede the sector in point of expense, accuracy or expedition.
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time 

space 
Spacetime diagram of 
an interferometer 

We are developing a machine 
specifically to probe the 
minimum interval of time: 

“Holographic Interferometer” 
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Strategy for Our Experiment 

Direct test for the holographic noise 
Positive signal if it exists 
Null configuration to distinguish from other noise 

Sufficient sensitivity 
Provide margin for prediction 
Probe systematics of perturbing noise 

Measure properties of the holographic noise 
Frequency spectrum 
Spatial correlation function  
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Correlated holographic noise in nearby interferometers 

Matter on a given null wavefront “moves” together 
no locally observable jitter should depend on remote measurements 

phase uncertainty accumulates over ~L 

Spacelike separations within causal diamond must collapse into the 
same state (i.e., clock differences must agree) 

46 

Nonoverlapping spacetime 
volumes, uncorrelated noise 

overlapping spacetime volumes, 
correlated holographic noise 
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Experiment Concept 

Measurement of the correlated optical phase fluctuations in a pair of 
isolated but collocated power recycled Michelson interferometers 

exploit the spatial correlation of the holographic noise 

use the broad band nature of the noise to measure at high frequencies 
(MHz) where other correlated noise is expected to be small  
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Fermilab holometer: a stereo search for holographic noise 

Compare signals of two 40-meter Michelson interferometers at 
different separations and orientations 

48 

time 

space Causal diamonds of 
beamsplitter signals 



Holometer layout (shown with 20 foot arms in “close” configuration)  
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Broadband system noise is uncorrelated 

Coherently build up holographic signal by cross correlation  

holographic signal =  photon shot noise after 

For beamsplitter power  PBS=2 kW, arm length L=40m, time for 
three sigma measurement is about an hour 

Thermal lensing limit on beamsplitter power drives design 

Reject spurious correlations in the frequency domain  
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number of independent samples of the cross correlation.

The phase at each individual interferometer output is

φ1 = φn1 +φholo (10)

φ2 = φn2 +φholo, (11)

where φn1 and φn2 are the incoherent photon shot noises for each interferometer, and φholo

is the holographic noise. Neglecting cross terms, the cross correlation at zero delay averaged

over N samples is approximated by

(φ1 ×φ2)N =
(δφn)2�

tobs

τsample

+ (δφholo)2 (12)

where it is assumed that the independent phase noise in the two interferometers has the same

variance. N = tobs/τsample is the total number of samples in the measurement for an observa-

tion time tobs. An estimate for the observation time required to have the correlated variances

be equal to the uncorrelated one is when the two terms in the cross correlation become equal

tobs > τsample

�
(δφn)2

(δφholo)2

�2

. (13)

If the dominant independent noise comes from intrinsic quantum phase fluctuations of the

light (a Glauber state for the electromagnetic field of the laser which has a Poisson distribution

in photon number and satisfies a photon number-phase uncertainty relationship δφ×δn ≈ 1),

the variance in the phase in a sample 2L/c long is

(δφn)2 =
1

n
= 1

ṅτsample

= hc2

2PBSLλopt

(14)

where n is the number of photons, PBS is the optical power at the symmetric port of the beam

splitter and λopt is the wavelength of the light. This equation determines the design of the

experiment. To achieve unity signal to noise, the observation time is

tobs >
� h
PBS

�2
�
λopt

λPl

�2� c3

32π4L3

�
. (15)

We choose readily achievable parameters (standard within the gravitational wave community)

for our benchmark design: L = 40 m, λopt = 1064 nm and PBS = 2000 watts. With these param-

eters, each interferometer achieves a phase noise sensitivity ofφn(f) = 8×10
−12

radians/
√

Hz.

The sampling time is 2L/c = 270 ns. For predicted holographic phase noise levels (see Figure 3

and appendix H) around φholo ≈ 5× 10
−14

radians/
√

Hz, Eq. 13 indicates that the observation

time to achieve a signal to noise of unity is 3 minutes. Approximately 1/2 hour is needed to

achieve a 3 sigma result in the holographic noise power.

The proposed 40 m devices are similar to those successfully implemented in the Garching 30 m

and Caltech 40 m interferometers more than 20 years ago (Shoemaker et al., 1988; Zucker,

1992), albeit with slightly tighter requirements on the optics, still well within the capabilities

14



Predicted Planck-amplitude frequency spectrum 
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The effective theory of holographic noise based on the above principles is precisely calibrated

using black hole entropy, and gives zero-parameter predictions (Hogan, 2009) for observables

such as the frequency spectrum of phase noise, as well as estimates for the cross-correlation

of two close-by interferometers.

Specifically, for a single interferometer, the noise is characterised by the time autocorrelation

of X(t), the pathlength difference between the waves from the two arms. The autocorrelation

is defined as the limiting average,

Ξ(τ) = lim
T→∞

(2T)−1

� T

−T
dtX(t)X(t + τ) (2)

The semiclassical theory gives a prediction for this quantity,

Ξ(τ) = λp
π
(2L− cτ), 0 < τ < 2L/c, (3)

and

Ξ(τ) = 0, τ > 2L/c. (4)

In the frequency domain, the power spectral density of displacement is defined as Ξ̃(f ) =
2
�∞
0
dτΞ(τ) cos(τω), where ω = 2πf . The prediction for the frequency spectrum of the

holographic displacement noise is then

Ξ̃(f ) = c2
2tP

π(2πf)2
[1− cos(f/fc)], fc ≡ c/4πL. (5)

Note that this predicted spectrum is valid at all frequencies for a given interferometer of length

L. In the low frequency limit, the spectrum is independent of f :

Ξ̃(f ) ≈ 4tPL2/π , f << c/2L. (6)

To obtain the apparent gravitational wave dimensionless strain power spectral density, for a

simple Michelson interferometer, this expression should be divided by L2
. For other configu-

rations, the translation is more complex.

A key element of our experimental design is the correlation of the noise signals in two sepa-

rate interferometers. This noise correlation is expected if two devices are located sufficiently

closely such that the jitter in the underlying spacetime is causally correlated. In the holographic

effective theory built on light sheets, time and longitudinal position are identified. Measure-

ment of a position at one point on a light sheet collapses the wavefunction at other points

on the wavefront, even though they have spacelike separation. The apparent motion is thus in

common across a significant transverse distance— not only across a macroscopic beamsplitter,

say, but even between disconnected systems. This correlation has the same character as other

quantum correlations between spacelike-separated measurements: the correlation is limited

by causality. In the interferometers, where two longitudinal directions are being compared, the

measured phase difference in one interferometer is correlated with a portion, but not all of the

phase difference in another, nearby interferometer. The future light cone of a reflection event

along one arm, and the past light cone of the reflection event along the other arm, define a

causal diamond; the signal is not correlated with systems beyond this volume of spacetime.
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Figure 3: Predicted frequency spectrum of holographic noise displacement

�
Ξ̃(f ) for a single Michel-

son interferometer with L=40m. Because the holographic signal (Equation 5) adds in quadrature to the

noise of a single interferometer and is subdominant, this spectrum is difficult to measure cleanly in an

individual interferometer. Instead, we will measure the cross-correlation of the noise Ξ̃×(f ) (Equation 9)

in two interferometers operated in close proximity. The component of the noise product due to the holo-

graphic jitter of the common underlying spacetime will sum coherently and grow linearly with time, while

the product of the uncorrelated random noise in the two devices will sum with a random phase and grow

only as the square root of time. In this way, the correlated noise can be easily isolated. For ∆L → 0, the

normalization Ξ̃×(f ) = Ξ̃(f ). Using 1064 nm photons, the corresponding phase noise spectral density is

Φholo ≈ 6× 10
−14

radians/
√

Hz, a level easily probed with a modest requirements on interferometer design

and integration time.
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Predicted time-domain correlation, decorrelation 
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with sufficient integration time, to extract the correlated noise component even if it only forms
a small fraction of the total noise.

We will study several signatures of the correlation of holographic noise. We will measure how
the correlation depends on time lag and frequency, the separation between the interferometers,
and the angle between the orientations of the interferometers.

Equation 8 predicts the shape of the correlation function in the time domain, as a function of
∆L. Figure 4 shows this for ∆L = 0 and ∆L = 8 meters.

0

5e-18

1e-17

1.5e-17

2e-17

2.5e-17

0 5e-08 1e-07 1.5e-07 2e-07 2.5e-07

�
Ξ×(τ)
(m)

τ (seconds)

Figure 4: Predicted cross correlation in the time domain between two L = 40 meter interferometers, for
two different configurations. The shape of the correlation is an important diagnostic. The solid line is for
an offset ∆L = 0, while the dotted line is for ∆L = 8 meters. Note that the exact shape of Equation 8 is only
valid for ∆L→ 0. Causality arguments predict that the correlation falls to zero for ∆L ≥ L.

General arguments also suggest that the cross correlation is maximum for aligned interferom-
eters, ∆θ = 0 ◦, and decreases to zero for ∆θ ≥ 90 ◦. This happens because the signal of each
is only sensitive to components of effective motion normal to the plane of each beamsplitter.
Assuming that the interpolation between 0 ◦ and 90 ◦ scales as cos(∆θ), we expect to see the
correlation vary as shown in Figure 5.

The initial stage of the experiment is to measure the cross correlation between two aligned,
closely-spaced interferometers (∆L << L), and see whether Ξ×(τ) has the magnitude and shape
given by Equation 8 in the time domain, and Ξ̃× has the magnitude given by Equation 9 in the
frequency domain. A positive correlation signal in just this configuration is not convincing,
since there may be various, probably electromagnetic, sources of correlation. Most of the ef-
fort during the initial operation period of this experiment is expected to be devoted to detective
work to track down and mitigate conventional sources of noise correlation. A result consis-
tent with zero cross correlation in this configuration will allow upper limits to be set on any
holographic noise contribution.

In the case of a positive correlation signal, an operations space sufficiently large to allow re-
configurations allows us to measure the decoherence as a function of ∆L and ∆θ. Changing

12

Figure 2: Neighboring interferometers will experience correlated phase noise if the causal light cones of
the reflection events in each device have significant overlap. In this diagram, the horizontal plane represents
the plane of the interferometer arms, and the vertical axis represents time. The green dots represent reflec-
tion events at the beamsplitters, BS, and the end mirrors, M1 and M2. The causal diamond is the intersection
of the past light cone of one beamsplitter reflection event, shown here, and the future light cone of another
(the reflection of the cones drawn here through the horizontal plane). The measured signal is only correlated
with events in the enclosed spacetime volume. On the left, the two interferometers are separated and their
causal diamonds do not overlap. The space-time wavefunctions of the two beamsplitter positions collapse
into independent states when the dark port photons are measured, and there is no correlation between the
phase noise seen in each interferometer. On the right, for two neighboring interferometers, the spacetime
volume enclosed by the causal diamond overlaps considerably, so the two beamsplitter wavefunctions col-
lapse into nearly the same space-time state and their random walks are highly correlated. The resulting
correlated phase noise is expected to decrease monotonically as the two interferometers are moved apart.

For small displacements of two aligned interferometers offset along either arm by ∆L, the cross
correlation of effective beamsplitter position is estimated to be

Ξ×(τ) ≈ (λP/π)(2L− 2∆L− cτ), 0 < cτ < 2L− 2∆L (7)

= 0, cτ > 2L− 2∆L. (8)

In the frequency domain, the low frequency limit of cross-correlation becomes

Ξ̃×(f ) ≈ 4tPL2[1− (∆L/L)]/π , f << c/2L. (9)

The holographic interferometer experiment proposed here tests these predictions. Either a
positive or a null result should throw light on the little understood macroscopic classical limit
of unification theories.

A.2 Comparison with other experiments

No experiment has yet been done to search specifically for holographic noise. However, two
existing gravitational wave interferometers may be capable of detecting the effect as a new
noise source, and we have obtained information about their results.

The GEO-600 interferometer has had “mystery noise” which has limited their strain sensitiv-
ity for about two years. The holographic prediction approximately accounts for all of the
unexplained noise at frequencies above about 500Hz, its most sensitive frequency. At that
frequency, the mystery noise is about 30 percent of the total noise. GEO600 is in the process
of making an accounting sum of several noise terms. Hopefully these terms will be well under-
stood and small enough so that errors in them will not mask the holographic noise. However,
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Optical layout: standard power-recycled Michelson 
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2 W
1064 nm
NPRO

Faraday
Isolator

Freq.        Intensity

Frequency Servo

Intensity Servo

Reference
Cavity

Mode
Cleaner

Power
Control

Vacuum
Enclosure

End
Mirror Y

End
Mirror X

Power
Recycling 
Mirror

Beam Splitter

Readout
Photodiodes

Figure 6: The holometer optical layout is based up a low noise Nd:YAG NPRO laser producing 2 W of
1,064 nm light. The light is intensity stabilized using a DC coupled photodiode, and the frequency is
stabilized to the common mode arm length. The interferometer consists of a power recycling mirror, beam
splitter, and end mirrors enclosed in an ultra high vacuum system. Although the readout photodiodes are
shown enclosed in a vacuum system, initial commissioning will use in air photodiodes. The diagram also
details the positions of optional subsystems – a fixed spacer reference cavity, laser mode cleaner, and power
control – which will be installed as required.

Parameter Value
Input Laser Power 0.75 W
Arm length BS-EM 40 m
Arm asymmetry (X-Y) 1 mm
PRC length PR-BS 0.5 m
End Mirror Transmission 10 ppm
Beam splitter Transmission 0.50
AR reflectivity 10 ppm
Mirror loss (PR, BS, EM) 50 ppm
Differential arm loss 25 ppm
Substrate loss 10 ppm
Transimpedance resistor 100 ohm
Voltage noise 3 nV/

√
Hz.

Table 1: Optickle simulation parameters used to estimate the TPRM and δx.

shown with a black diamond, are a compromise between phase noise sensitivity, φ(f ) ∼ 8 ×
10−12 rad/

√
Hz, and tolerance for each mirrors specific values of loss and absorption. With the

slightly over-coupled configuration shown here, the cavity will remain over-coupled even if the
loss is higher than predicted. Equally important, the power on the beam splitter and output
photodiodes is manageable, if not exactly comfortable. The 2 kW of beam splitter power is
larger than the LIGO interferometers, and somewhat less than the 5 kW used by GEO. The
5 mW per photodiode can be managed with modifications to the diode’s DC gain described
below.
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Table-top prototype power-recycled Michelson 
interferometer in the Fermilab Linac lab 

Beamsplitter 
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55 

Control & data system 

stations, a remote electronic enclosure containing a gain-setable buffer amplifier and analog
Nyquist filter will provide the cable distribution for the vacuum station. Table 4 lists the main
electronic components of the system.
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Figure 14: Schematic diagram of the electronics for each interferometer. Residing in a PXIe chassis are
the low frequency control loops, implemented with digital filters, and the high-frequency data acquisition
boards and data storage. Not shown are the remote buffer amps and Nyquist filters.

D.1 Low Frequency Control Systems

The low frequency control system consists of a set of digital control loops, The loops have gain-
settable preamplifiers and analog Nyquist filters following the photodiode preamplifiers shown
in Figure 11 for each photodiode. The output of the digital loop filters are also buffered by
remote analog output filtering circuits and control the piezoelectric actuators using commercial
piezo-amplifiers. Gain and parameter setting in the preamplifier is accomplished with simple
digital control of switches in the preamplifier circuit controlled by the PXIe chassis.

The digital filters themselves are implemented using National Instruments analog R-series I/O
cards with onboard FPGA digital signal processing circuits. The boards are in a PXIe backplane
chassis with a local control computer. The control loop filters are designed using simulation
packages and a LabVIEW FPGA module specifically designed to implement digital signal process-
ing on the R-series FPGAs. The filters can be modified in real-time from the control computer
to implement the lock acquisition outlined in Section C.3.

The low frequency cards will generate housekeeping signals filtered to 100 Hz bandwidth for all
sensor and drive signals. These signals are stored to disk for all times when the interferometer

26
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Off-the-shelf components and control software 

Designed to control RF noise 
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Status of the Fermilab Holometer 

!  Team:   
–  Fermilab (A. Chou, G. Gutierrez, CJH, E. Ramberg, J. Steffen, C. Stoughton, 

R. Tomlin, W. Wester)  

–  MIT (R.Weiss, S.Waldman)  

–  Caltech (S. Whitcomb)  
–  University of Chicago (S. Meyer + students) 

–  University of Michigan (R. Gustafson) 

–  includes LIGO experts 

!  Building tabletop prototypes at Fermilab 
–  Successful edge-locked interferometer, power recycled cavity 

!  Designing 40m system 
!  Developing & testing detectors, electronics, control systems 
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Physics Outcomes 

If noise is not there,  

Constrain interpretations of holography 
But no direct challenge to widely cherished beliefs 

If it is detected,  experiments probe Planck scale unification 

Study holographic relationships among matter, energy, space, time 

Shape interpretation of fundamental theory 
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If we find holographic noise, so what? 

Directly verify the “movement without motion” of spacetime 

Directly measure the minimum interval of space and time 

Show that reality is a kind of hologram 

Data on unification of mass-energy and spacetime, directionality 
of time measurements 

Absolute limit to bandwidth: technology implications 
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